S520 Homework 3

Enrique Areyan
 January 18, 2012

Chapter 4, Section 5, \#1:
(a) The pmf of X is $f(y)=P(x=y)$, for $y \in X(S)$ and 0 otherwise, i.e.:

$$
\begin{aligned}
& f(1)=P(X=1)=0.1=P(X=6)=f(6) \\
& f(3)=P(X=3)=0.4=P(X=4)=f(4)
\end{aligned}
$$

and 0 otherwise
(b) The cdf of X is $F(y)=P(X \leq y)$, for $y \in R$, i.e.

$$
\begin{gathered}
F(k)=0,-\infty \leq k<1 \\
F(1)=F(X \leq 1)=0.1 ; F(3)=F(X \leq 3)=0.5 \\
F(4)=F(X \leq 4)=0.9 ; F(6)=F(X \leq 6)=1 ; F(h)=1, h \geq 6
\end{gathered}
$$

(c) Expected value of X :

$$
\begin{aligned}
& E X=\sum_{x \in X(S)} x f(x)=1 \cdot f(1)+3 \cdot f(3)+4 \cdot f(4)+6 \cdot f(6) \\
&=1 \cdot 0.1+3 \cdot 0.4+4 \cdot 0.4+6 \cdot 0.1=0.1+1.2+1.6+0.6=3.5
\end{aligned}
$$

(d) Variance of X :

$$
\begin{aligned}
\operatorname{Var} X & =E X^{2}-(E X)^{2}=1^{2} \cdot f(1)+3^{2} \cdot f(3)+4^{2} \cdot f(4)+6^{2} \cdot f(6)-3,5^{2} \\
& =0.1+3.6+6.4+3.6-12.25=13.7-12.25=1.45
\end{aligned}
$$

(e) Standard Deviation of $X=\sqrt{\operatorname{Var} X}=\sqrt{1.45}=1.204159458$

Chapter 4, Section 5, \#5:
(a) $P(A=1, B=3, C=4, D=6)=$ events are independent, thus $=$ $P(A=1) \cdot P(B=3) \cdot P(C=4) \cdot P(D=6)=0.1 \cdot 0.4 \cdot 0.4 \cdot 0.1=0.0016$
(b) Same as before but in different order, i.e., $P(A=1, B=6, C=$ $3, D=3)=$ events are independent, thus $=P(A=1) \cdot P(B=$ $6) \cdot P(C=3) \cdot P(D=4)=0.1 \cdot 0.1 \cdot 0.4 \cdot 0.4=0.0016$
(c) There are 4! ways of getting different results for each of these four astragali. Thus, the probability of producing a venus is: $4!\cdot 0.0016=$ 0.0384
(d) A run of a venus is getting a venus each time in the run. The key here is to regard each venus as independent of another. Thus, the probability of producing two venuses one after another is $0.0016 \cdot 0.0016$. Generalizing this result, the probability of producing k venuses in a run of length k is 0.0016^{k}.

Chapter 4, Section 5, \#10: On the one hand, let $Y=$ number of people that accepted the invitation. Then

$$
Y \sim \operatorname{Binomial}(12,0.5)
$$

On the other, let $Z=$ number of people that accepted the invitation and actually show to the dinner party. Then,
$Z \sim \operatorname{Binomial}(k, 0.8)$, where k will vary according to the number of attendants
It is important to note that I am assuming that if a guest does not accept the invitation, he/she does not show to the party.

Now, we want to know what is the probability that more guests attend than can be accommodated. This means that either 8 guests accepted the invitation and 8 attended, or 9 guests accepted and 8 attended, or 9 accepted and 9 attended, ..., or 12 accepted and 12 attended.

In the model this is equal to

$$
\sum_{j=8,8 \leq j \leq k}^{12} P(Y=j \text { and } Z=k)=\sum_{j=8,8 \leq j \leq k}^{12} P(Y=j) \cdot P(Z=k)
$$

Assuming that Y and Z are independent:
$P(Y=8) \cdot P(Z=8)+P(Y=9) \cdot P(Z=8)+P(Y=9) \cdot P(Z=9)+P(Y=$ 10) $\cdot P(Z=8)+P(Y=10) \cdot P(Z=9)+P(Y=10) \cdot P(Z=10)+P(Y=$ 11) $\cdot P(Z=8)+P(Y=11) \cdot P(Z=9)+P(Y=11) \cdot P(Z=10)+P(Y=$ 11) $\cdot P(Z=11)+P(Y=12) \cdot P(Z=8)+P(Y=12) \cdot P(Z=9)+P(Y=$ $12) \cdot P(Z=10)+P(Y=12) \cdot P(Z=11)+P(Y=12) \cdot P(Z=12)$.

Using R, I obtained the following probability: 0.05730992. Here is the function I wrote for this problem:

```
hw3 <- function(y){
for (i in 8:12){
for(j in 8:i){
#Y variable - > print(dbinom(i,12,0.5))
#Z variable - > print(dbinom(j,i,0.8))
y <- y + (dbinom(i,12,0.5) * dbinom(j,i,0.8))
}
```

```
}
print("Result")
print(y)
}
```

Chapter 4, Section 5, \#12:
(a) Let $Y=$ number of students that will need to be accommodated. Then:

$$
Y \sim \operatorname{Binomial}(225 ; 0.36)
$$

The number of expected freshmen that will have to be accommodated are equal to $E Y=225 \cdot 0.36=81$
(b) $P(Y>95)=1-P(Y \leq 95)=($ using R$)=1-\operatorname{pbinom}(95,225, .36)=$ 0.02291658

Chapter 4, Section 5, \#14:
(a) Let $Y=$ number of symbols correctly identified. Then.

$$
Y \sim \operatorname{Binomial}\left(25, \frac{1}{5}\right)
$$

We should expect the receiver to identify $E Y=25 \cdot \frac{1}{5}=5$ symbols correctly.
(b) $P(Y>7)=1-P(Y \leq 7)=($ using R$)=1-\operatorname{pbinom}(7,25,1 / 5)=$ 0.1091228
(c) Each receiver can be modeled as a binomial variable:

$$
Y_{i}=\text { score of receiver } i \sim \operatorname{Binomial}(25 ; 1 / 5)
$$

Each Y_{i} is i.i.d and $1 \leq i \leq 25$. The probability we want is:

$$
\begin{aligned}
& P\left(Y_{1}>7 \text { or } Y_{2}>7 \text { or } \ldots \text { or } Y_{20}>7\right)=1-P\left(\left(Y_{1}>7 \text { or } Y_{2}>7 \text { or } \ldots \text { or } Y_{20}>7\right)^{c}\right)= \\
& 1-P\left(Y_{1} \leq 7 \text { and } Y_{2} \leq 7 \text { and } \ldots \text { and } Y_{20} \leq 7\right)=1-P\left(Y_{1} \leq 7\right) \cdot P\left(Y_{2} \leq 7\right) \cdot \ldots \cdot P\left(Y_{20} \leq 7\right)= \\
& \quad 1-(\operatorname{pinom}(7,25,1 / 5))^{20}=1-0.8908772^{20}=0.900835341
\end{aligned}
$$

Chapter 4, Section 5, \#15:
Let $Y_{i}=$ the number of heads counted by student i. Then

$$
Y_{i} \sim \operatorname{Binomial}(89 ; 0.3), \text { for each } 1 \leq i \leq 1500
$$

We want to calculate the following probability:
$P($ at least one student observe no more than two heads $)=$
$1-P($ none of the students observe no more than two heads $)=$
$1-\prod_{i=1}^{1500} P\left(Y_{i} \leq 2\right)=1-\operatorname{pbinom}(2,89,0.3)^{1500} \approx 1-0=1$

